Copied to
clipboard

G = C42.182D4order 128 = 27

164th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.182D4, C24.33C23, C23.492C24, C22.2742+ 1+4, C22.2022- 1+4, C23⋊Q824C2, C4.76(C4.4D4), (C2×C42).76C22, C23.11D449C2, (C22×C4).551C23, C22.327(C22×D4), C24.C2293C2, (C22×D4).179C22, (C22×Q8).443C22, C23.67C2368C2, C2.70(C22.19C24), C24.3C22.51C2, C2.C42.226C22, C2.47(C22.50C24), C2.18(C22.31C24), C2.25(C22.53C24), (C2×C4×Q8)⋊26C2, (C4×C4⋊C4)⋊105C2, (C2×C4).682(C2×D4), C2.28(C2×C4.4D4), (C2×C4).158(C4○D4), (C2×C4⋊C4).881C22, (C2×C4.4D4).26C2, C22.368(C2×C4○D4), (C2×C22⋊C4).56C22, SmallGroup(128,1324)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.182D4
C1C2C22C23C22×C4C2×C42C2×C4×Q8 — C42.182D4
C1C23 — C42.182D4
C1C23 — C42.182D4
C1C23 — C42.182D4

Generators and relations for C42.182D4
 G = < a,b,c,d | a4=b4=c4=d2=1, ab=ba, cac-1=ab2, dad=a-1b2, cbc-1=dbd=b-1, dcd=a2c-1 >

Subgroups: 500 in 260 conjugacy classes, 104 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C4.4D4, C22×D4, C22×Q8, C4×C4⋊C4, C24.C22, C24.3C22, C23.67C23, C23⋊Q8, C23.11D4, C2×C4×Q8, C2×C4.4D4, C42.182D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4.4D4, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.19C24, C2×C4.4D4, C22.31C24, C22.50C24, C22.53C24, C42.182D4

Smallest permutation representation of C42.182D4
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 12 21 43)(2 9 22 44)(3 10 23 41)(4 11 24 42)(5 56 40 26)(6 53 37 27)(7 54 38 28)(8 55 39 25)(13 64 48 36)(14 61 45 33)(15 62 46 34)(16 63 47 35)(17 30 52 60)(18 31 49 57)(19 32 50 58)(20 29 51 59)
(1 63 37 49)(2 36 38 19)(3 61 39 51)(4 34 40 17)(5 52 24 62)(6 18 21 35)(7 50 22 64)(8 20 23 33)(9 48 28 58)(10 14 25 29)(11 46 26 60)(12 16 27 31)(13 54 32 44)(15 56 30 42)(41 45 55 59)(43 47 53 57)
(1 55)(2 28)(3 53)(4 26)(5 42)(6 10)(7 44)(8 12)(9 38)(11 40)(13 62)(14 33)(15 64)(16 35)(17 58)(18 31)(19 60)(20 29)(21 25)(22 54)(23 27)(24 56)(30 50)(32 52)(34 48)(36 46)(37 41)(39 43)(45 61)(47 63)(49 57)(51 59)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,12,21,43)(2,9,22,44)(3,10,23,41)(4,11,24,42)(5,56,40,26)(6,53,37,27)(7,54,38,28)(8,55,39,25)(13,64,48,36)(14,61,45,33)(15,62,46,34)(16,63,47,35)(17,30,52,60)(18,31,49,57)(19,32,50,58)(20,29,51,59), (1,63,37,49)(2,36,38,19)(3,61,39,51)(4,34,40,17)(5,52,24,62)(6,18,21,35)(7,50,22,64)(8,20,23,33)(9,48,28,58)(10,14,25,29)(11,46,26,60)(12,16,27,31)(13,54,32,44)(15,56,30,42)(41,45,55,59)(43,47,53,57), (1,55)(2,28)(3,53)(4,26)(5,42)(6,10)(7,44)(8,12)(9,38)(11,40)(13,62)(14,33)(15,64)(16,35)(17,58)(18,31)(19,60)(20,29)(21,25)(22,54)(23,27)(24,56)(30,50)(32,52)(34,48)(36,46)(37,41)(39,43)(45,61)(47,63)(49,57)(51,59)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,12,21,43)(2,9,22,44)(3,10,23,41)(4,11,24,42)(5,56,40,26)(6,53,37,27)(7,54,38,28)(8,55,39,25)(13,64,48,36)(14,61,45,33)(15,62,46,34)(16,63,47,35)(17,30,52,60)(18,31,49,57)(19,32,50,58)(20,29,51,59), (1,63,37,49)(2,36,38,19)(3,61,39,51)(4,34,40,17)(5,52,24,62)(6,18,21,35)(7,50,22,64)(8,20,23,33)(9,48,28,58)(10,14,25,29)(11,46,26,60)(12,16,27,31)(13,54,32,44)(15,56,30,42)(41,45,55,59)(43,47,53,57), (1,55)(2,28)(3,53)(4,26)(5,42)(6,10)(7,44)(8,12)(9,38)(11,40)(13,62)(14,33)(15,64)(16,35)(17,58)(18,31)(19,60)(20,29)(21,25)(22,54)(23,27)(24,56)(30,50)(32,52)(34,48)(36,46)(37,41)(39,43)(45,61)(47,63)(49,57)(51,59) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,12,21,43),(2,9,22,44),(3,10,23,41),(4,11,24,42),(5,56,40,26),(6,53,37,27),(7,54,38,28),(8,55,39,25),(13,64,48,36),(14,61,45,33),(15,62,46,34),(16,63,47,35),(17,30,52,60),(18,31,49,57),(19,32,50,58),(20,29,51,59)], [(1,63,37,49),(2,36,38,19),(3,61,39,51),(4,34,40,17),(5,52,24,62),(6,18,21,35),(7,50,22,64),(8,20,23,33),(9,48,28,58),(10,14,25,29),(11,46,26,60),(12,16,27,31),(13,54,32,44),(15,56,30,42),(41,45,55,59),(43,47,53,57)], [(1,55),(2,28),(3,53),(4,26),(5,42),(6,10),(7,44),(8,12),(9,38),(11,40),(13,62),(14,33),(15,64),(16,35),(17,58),(18,31),(19,60),(20,29),(21,25),(22,54),(23,27),(24,56),(30,50),(32,52),(34,48),(36,46),(37,41),(39,43),(45,61),(47,63),(49,57),(51,59)]])

38 conjugacy classes

class 1 2A···2G2H2I4A···4H4I···4Z4AA4AB
order12···2224···44···444
size11···1882···24···488

38 irreducible representations

dim1111111112244
type+++++++++++-
imageC1C2C2C2C2C2C2C2C2D4C4○D42+ 1+42- 1+4
kernelC42.182D4C4×C4⋊C4C24.C22C24.3C22C23.67C23C23⋊Q8C23.11D4C2×C4×Q8C2×C4.4D4C42C2×C4C22C22
# reps11422221141611

Matrix representation of C42.182D4 in GL6(𝔽5)

010000
400000
003100
002200
000002
000030
,
100000
010000
001200
004400
000004
000010
,
200000
020000
001200
000400
000020
000003
,
100000
040000
001200
000400
000001
000010

G:=sub<GL(6,GF(5))| [0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,2,0,0,0,0,1,2,0,0,0,0,0,0,0,3,0,0,0,0,2,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,4,0,0,0,0,2,4,0,0,0,0,0,0,0,1,0,0,0,0,4,0],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,2,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,2,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C42.182D4 in GAP, Magma, Sage, TeX

C_4^2._{182}D_4
% in TeX

G:=Group("C4^2.182D4");
// GroupNames label

G:=SmallGroup(128,1324);
// by ID

G=gap.SmallGroup(128,1324);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,672,253,456,758,723,352,675,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a^-1*b^2,c*b*c^-1=d*b*d=b^-1,d*c*d=a^2*c^-1>;
// generators/relations

׿
×
𝔽